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FORMATION OF TAYLOR VORTICES BETWEEN HEATED ROTATING CYLINDERS 

V. Vo Kolesov UDC 532.516 

Experimental observations [1-4] show that a secondary steady flow of the Taylor vortex 
type (rotationally symmetric toroidal vortex cells regularly positioned along the symmetry 
axis of the cylinders) can arise as the result of the loss of stability of a nonisothermal 
Couette flow between concentric cylinders rotating with different angular velocities. This 
secondary flow was found in [5] by the Lyapunov-Shmidt method in the case in which the 
cylinders are rotating in the same direction and the Prandtl number is equal to unity. 

Results are presented in this paper of calculations of Taylor vortices both for the 
case in which the cylinders rotate in the same direction and for the case of an opposite 
rotation direction of the cylinders. The change in the structure of the vortices as the 
values of the parameters of the problem vary is illustrated by the pattern of the stream 
lines of the secondary flow. Analytic dependences of the amplitude of the vortices and the 
decrement of a nonisothermal Couette flow on the Prandtl number are obtained, which eliminate 
the need to make time-consuming calculations and permit establishing some properties of the 
fundamental and secondary regimes. One should note that a similar dependence of the ampli- 
tude of the secondary regime on the Prandtl number for the steady problem of free convection 
in a layer of liquid was established and used in the calculations in [6]. 

i. The Lyapunov--Shmidt Series. Let a viscous uniform heat-conducting liquid fill the 
cavity between two infinite solid concentric cylinders. The radii, angular velocities, and 
temperatures of the inner and outer cylinders will be denoted by RI, ~, 01 and R~, ~a, @2, 
respectively. 

We will assume that there are no external body forces and the discharge rate of the 
liquid through the transverse cross section of the cavity of the cylinders is equal to zero. 
Then the Navier--Stokes equations and the thermal conductivity equation permit an exact solu- 
tion (a nonisothermal Couette flow) with the velocity vector U0 = {e0r, u0~, uoz}, temperature 
To, and pressure H0 (r, ~, and z are dimensionless cylindrical coordinates): 

Uo = {0, Vo(r), 0}, Vo = a r - l - b / r ,  T O = c l n r  @ t,  (1 .1 )  
r 

1 

a = ( I R  = - 1 ) / ( 1  = - 1 ) ,  b = l - - a ,  c = (O- -  t ) / lnR,  

where ~ = Bc@~Pr is the Rayleigh number, Pr = v/X is the Prandtl number, ~, v, and X are the 
thermal expansion, kinematic viscosity, and thermal conductivity coefficients, respectively, 
R = R=/RI, ~ = aa/~1, and O = 82/01. 

Rostov-on-Don. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
6, pp. 87-93, November-December, 1981. Original article submitted May 30, 1980. 
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It is necessary to find the rotationally symmetric secondary steady flow which arises 
as the result of the stability loss of the flow (I.!). 

Applying the procedure of [7] and using the results of [5], we are convinced that one 
can represent the secondary flow in the form of power series in a small neighborhood of the 
critical value of the Reynolds number: 

v ~ =  eAul (r )  cos az  -{- e~A~;%u~(r) cos 2az -4- O(ea), (1.2) 

% = Vo(r) + eAv~(r) cos o;z + e~A~o[V~(r) cos 2az + Vo(r)] + O(e~), 

v z = eAw, (r )  sin cr + e~A~oW~(r ) sin 2ctz + O(e~), 

T = To + cPr(eA,~(r) cos az + e~A2~o[,~.(r) cos 2az + %(@]) + O(eg, 

I!  ----- I!  o + (eAqx(r) cos az  + e~A~o[qe(r ) cos 2az  + qo(r)])/~ o + O(e~), 

where a is the wave number, ~ = [(l -- ~o)sign(g)] ~/~ is a small parameter, X = ~R~/~ is 

VI, 

problem 

the Reynolds number, and %~ is its critical value. 
constant g are found from the formulas 

A = 

I~ = j" [(2r - -  pc%~J u + (g~v - -  g~)  u j  rdr, 
i 

I~ = J (hu + ]~v + ]~w + Pr  ]~'~) rdr, 
l 

du 2 du~ 2 V 
/~ = u~ "-Tf--r + u~ ~ - -  a (u~w~ + 2u~w~) - -  "7" ~ (v2 + 2vo), 

t u d 
= -~ " 7 )  /~1 - -  (7,, (UlW 2 -J- 2v~wj, 

dme dw x 

d dT~ 

0 h = V o / r  , o ) 2 = V ~ / r ,  g l = - - 2 a ,  g ~ = t / r .  

In order to determine the critical value of the Reynolds number and the functions u~, 
and ~, it is necessary to find the smallest positive eigenvalue Xo of the spectral 

Lc~u = a ~ ( 2 ~ 1 v l -  H ~ l ) ,  L~vl  = - -  l g l u l ,  

i \ d ~ 1 d 1 
n a + - ~ - J T  I= ~g2ul, na  ~ 7 -~ r dr r 2 053' 

d u J d r  = u 1 =  vl = ~cl = O (r = t ,  R) .  

The  f u n c t i o n s  wz a n d  q :  a r e  o f  t h e  f o r m  

Y)z = ar dr (rul) ,  ql = - -  ~ -  L= + 1. 

I t  i s  n e c e s s a r y  t o  s o l v e  t h e  i n h o m o g e n e o u s  b o u n d a r y - v a l u e  p r o b l e m  

L~au~ = 4a~ (2~1v~ - -  ~ 2 ~ )  + %, 

du~/dr =: u2 = v2 = "% = 0 (r = :1, R),  

r v ~ - - \  dr +"-7" u l -  u l  Lc~u!, 

in order to determine the functions u2, va, and T2. 

The functions w2 and q2 are of the form 

w2 = 2c~r dr (ru~), q~ = u 1 ~ + ~zw - -  ~-d L2~ + w v  

The amplitude of the vortices A and the 

(i.3) 

(i.4) 

(1.5) 
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It is necessary to solve the homogeneous boundary-value problem 

L~v : :  --2)~oOhU, (L~ + l/r~)t = ; < o ~ u ,  
du/dr = u := v = ~  = 0 (r = t ,  B) 

(1.6) 

in order to determine the functions u, v,  and T. 

The functions w, qo, Vo, and to are of the form 
r 

czrt __d (ru), qo == ~0 S (2~176 -- ~ i t ~  dp -- ~1, W = =  d r  

1 

v~ = r %  (r) - -  ~ (B) Ri  (r ' ~ - l ) l ( B  ~ - t ) r ,  %=:cps(r ) - % ( B ) l n r / l n B ,  
r 1r 

ePl u~ ~ ( u l - v ~  dp, cp~ dp, (p ,=  ul~ldp. 
1 1 1 

We will apply the perturbation method [8] to investigate the arrangement of the sta- 
bility spectra of the flows (i.i) and (1.2). 

Superimposing infinitely small rotationally symmetric monotonic (2~/a)-periodic per- 
turbations proportional to exp(ot) on the flow (i.i), linearizing the boundary-value prob- 
lem obtained in the neighborhood of the flow (i.i), and decomposing the eigenvalue o, which 
disappears as X§ into a series of perturbation theory, we obtain 

= o,20~ -- Xo) - f  0[(~ -- ko)2], 02 = I1/~oI3, (i. 7) 
B 

I3 := ,S' (u~u -i- vl v + wlw + Pr zlT) rdr. 
1 

S i m i l a r l y ,  t h e  e i g e n v a l u e  e '  f rom t h e  s t a b i l i t y  sp ec t ru m  of  t h e  f low ( 1 . 2 ) ,  which d i s -  
a p p e a r s  as  X+Xo, i s  decomposed i n t o  t h e  s e r i e s  

~ s  t o 
::- o~" + 0 (ed). (l. 8) 

! 

The decrements o2 and o2 of the flows (i.I) and (1.2) are connected by the relationship 
r 

% =- - -  2% sign (g). ( i .  9) 

We will assume that the "first" eigenvalue Xo of the problem (1.4) is simple and the 
constants I~, I2, and Ia are different from zero. 

Let o2 > 0; then the nonisothermal Couette flow (i.i) is stable in the case of small 
subcriticalities (~ < ~o) with respect to rotationally symmetric monotonic (2~/~)-periodic 
perturbations, and it is unstable in the case of small supercriticalities (X > lo). If 
g > 0, then when the Reynolds number >. passes through the critical value %o a rotationally 
symmetric (2w/~)-periodic secondary steady flow (1.2) which is stable for small supercriti- 
calities with respect to the monotonic perturbations of the same symmetry and periodicity 
bifurcates from the flow (I.!). If g < 0, then the secondary flow (1.2) branches off into 
the subcritical region and is unstable for small subcriticalities. 

Using the results of [7], one can convince oneself that the secondary flow (1.2) is 
determined in a unique way (to the accuracy of a shift along the cylinder axis z) by the 
wavenumber ~ with fixed ~, Pr, E, and R. 

2. Dependence of the Parameters of the Secondary Flow on the Prandtl Number. The 
solutions ul, v~, and t ~  and u, v, and T of the homogeneous problems (1.4) and (1.6) do not 
depend upon Pr. 
representation 

(k) (k) (k) 
where u= , v= , T2 
(i.8) 

The solution ui, vi, and ~2 of the inhomogeneous problem (1.5) permits the 

U (i) z ( 1 ) - ~ P r u ~  "), w., : + P r v ~  ~), I t 2  ~2  ~ 2 

T.!'~ T~ ]1 * PF T~ 2), 

(k = i, 2) do not depend upon Pr. We obtain from (1.3), (1.7), and 
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aa . . . .  2a, ,  Sigl l  (gr), ~7., 1 /(hi'  /~1 }if') ' 

( 2 . 1 ;  

where the constants ~o, ~i, ~2, bo, bt depend only on the wavenumber ~, the Rayleigh number 
p, the ratio of the angular velocities of the cylinders ~!, and the ratio of the cylinder 
radii R, and they do not depend upon s 

3. Numerical Results. The spectral problem (1.4), the inhomogeneous boundary-value 
problem (1.5), and the homogeneous problem (1.6) converged to boundary-value problems for 
eight ordinary first-order differential equations with variable coefficients, each of which 
was solved numerically by the ranging method. An orthogona]ization procedure was applied 
to suppress the rapidly increasing solutions which arise at large X. The characteristic 
solution of the problem (1.4) was specified with the help of the normalization condition 

.I" u, (r) rd," !. 
l 

From the physical standpoint the most dangerous perturbations are of greatest interest. 
therefore numerical minimization of Xo with respect to the wave number a was performed: 

~ .  - minx o(~) X o (~ , ) ,  

One should note here that for some values of the problem parameters, oscillatory per- 
turbations prove to be more dangerous than monotonic ones [9, i0]. As a result of the loss 
of stability of the flow (i.i), nonsteady Taylor vortices discussed in this paper and two- 
dimensional or three-dimensional self-oscillations arise first. 

The calculations were performed for the case R = 2. The results are presented in Table 
1 and Figs. 1-4. The calculations have shown that in contrast to the isothermal case (p = 
0) the decrement o2 of the regime (i.i) can turn out to be negative. This indicates that 
in a certain bilateral neighborhood of the point X = Xo the nonisothermal Couette flow (i.i) 
is unstable. One can verify that when X = 0 all the eigenvalues o from the stability spec- 
trum E of the flow (i.i) are negative. It follows from (1.7) that when X < Xo a positive 
o occurs in the spectrum E. It follows from this that for some X a merging of the eigen- 
values o from the spectrum Z has occurred with the formation of a complex-conjugate pair, 
which for X = X (~ (0 < X(~ < Xo) has passed through the imaginary axis into the right 
half-plane (o Re ~ 0), i.e., an oscillatory loss of stability of the flow (i.i) has occurred 
(a calculation of the neutral curves of oscillatory rotationally symmetric instability of a 
nonisothermal Couette flow was made in [9] in the case of an infinitely small gap between 
the cylinders). The calculations show that upon a further increase in the Reynolds number 
X this complex-conjugate pair merges into a double real eigenvalue o, which then splits into 
two simple ones. One of them returns along the real axis to the origin of coordinates and 

i i - � 8 4  , } 

!t i! ( ~ , i l  11 

~.o 1,4 ~,e r 

F i g .  1 

Z !--~ ! 

t.o ~,4 t,8 r 
F i g .  2 
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TABLE 1 

I~ Q (Z, ~,, ao al  ~% bo b.: 

10 
t0 
10 
10 
10 
10 
t0 
f0 
10 

--4 

--4 
--4 
_,~ 
__I t 

t ,0 3.0() 
0,4 3,12 
0.0 :h20 

--0,2 3,30 
--t3,4 3,55 
--0,5 3,78 
--0.6 l . t l  
--0,7 4,59 
--0,8 5,27 

0,8 
O,6 
0.4 
1<2 
I),0 

--0.2 
- - ) 4  
--0,6 
--0.8 

0,0 
-o ,1  
--o 2 
-iG 
--if, 
--0.5 
---(L6 

16,8 
24,7 
35,7 
45,5 
60,7 
71,t 
83,6 
98,0 

tt4.3 

--0,O40 
--o,o14 
0,076 
O,206 
~1,358 
0.335 
OA.07 

--olol,3 
--0,'198 

--0.006 
01004 
0,025 
0,070 
0,126 
0,040 

-- 0,18t 
--0,320 
--0,I46 

0,t65 
01174 
0,t64 
0,167 
0,245 
0,348 
0,,181 
0,570 
0,543 

--0,85 
5,47 

24,t6 
43,71 
54,78 
39,46 

7,38 
--17,94 
--I ,98 

2,98 
3,08 
:'.,12 
3,i5 
3.19 
3.29 
3,86 
5.05 
(;.12 

3,i;7 
3.1 
:< 2;3 
355 
i,Su 
5,()5 
5.58 

50,8 
48,3 
44,6 
44 ,.'; 
47.6 
5(~ .3 
77,8 

J~)9,t 
i42.6 

215,2 
t13.8 
1o:<4 
117.o 
134.2 

166,7 

--2,306 
--0,422 
--0,t02 

().()4() 
0.t77 
o,406 
1%62i 
(<402 t 

--~ 'r I 

'17.72 
4.5'~ 
3.46 
3.57 
3,42 
3.31 
2,78 

--1,152 
- ( ,081 

0,001 
o,0t6 
0,030 
0,071 
(/,125 
0,f.33 
0,180 

--1t,3'~ 
--2,05 
--t,33 
--I ,26 
-1;o2 
--I ,01 
--0,97 

2,728 I 
0,837 
0,4t4 
0,239 
0.t52 
0,126 
(I,232 
0,51)8 
0,748 

--2,33 
--o,91 
--0,68 
-- t ,06 
- t  ,51 
� 9  
- -J ,9 ,1  

--'~38,4 
--73,0 

0,3 
31,3 
54,8 
83,7 

123,1 
15115 

4770 
lt)6~ 
6(;6 
613 
5t6 
479 

ti,87 
i7,86 
22,29 
26,9l 
54,54 
93,36 

t47,93 
189,3i 
177,38 

592,4 
165,6 
76,1 
43,0 
28,2 
25,4 
43,7 
47,2 
46,2 

--3501. 
--578 
--288 
--262 
--198 
--~63 
- -  143 

vanishes for X = Xo. It is precisely this eigenvalue which is expandable into the series 
(1.7). The other eigenvalue remains positive for I = Io, which indicates instability of 
the flow (i.i) in some neighborhood of the point I = Io. The secondary steady flow (1o2) 
generated for ~ = %o is also unstable when oa < 0, since only an unstable regime can bifur- 
cate from an unstable regime. 

A change in the sign of the decrement o2 upon a variation of the problem parameters 
(p, Pr, ~, and R) occurs as a result of the change in sign of the constant 13. The neutral 
curves of oscillatory and monotonic instability merge when 13 = 0. The series of per- 
turbation theory for an eigenvalue ~ E which disappears as l§ is of the form 

in the ease 13 = 0. The latter indicates that the flow (i.i) is unstable for % > 1o in the 
ease 13 = 0. 

We note that the discussions given above are barely connected with the character]sties 
of the nonisothermal Couette flow and can be used for the detection of the oscillatory 
stability loss of other steady flows. 
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We will point out one more difference from the isothermal case~ When ~ ~= 0 the 
branching can be directed into the subcritical region for the most dangerous perturbations; 
therefore not only mild but also rigorous onset of nonisothermal Taylor vortices is possible 
in experiments. 

Pictures of the stream lines of nonisothermal Taylor vortices calculated according to 
the linear problem are shown in Figs. 1-4. 

For large values of the Rayleigh number (~ > 0) a single vortex cell occurs on the 
meridian plane in the region D({I ~ r ~ R, 0 ~ z ~ ~/~,}) whose symmetry center is 
located near the middle of the segment 1 ~ r ~ R (Fig. i, ~ = 40, ~ =-O.7, ~, = 3.135, 
and %, = 22.53). Variation of the ratio of the angular velocities of the cylinders ~ re- 
sults only in an insignificant deformation of the ceil. 

For small ~ > 0 a single vortex cell also occurs in the region D if the cylinders ro- 
tate in the same direction (~ ~ 0) or in different directions (~ < 0) but the absolute 
magnitude of ~ is small. If ~ << 0, then as ~ decreases, asecond (Fig. 2, ~ = 2, ~ = --0.5, 
a, = 4.655, and %, = 102.75) and then a third (Fig. 3, ~ = 2, ~ =--0~ ~, = 6.277~ and 
%, = 153.81) vortex cell arise near the surface of the outer cylinder. 

If ~ < 0, then several vortex cells can arise both for ~ < 0 and for ~ > 0. A second 
vortex cell arises near the outer cylinder if ~ < 0 and near the inner cylinder if ~ > 0. 

For some values of the parameters of the problem more complicated vortex structures can 
exist. For example, when ~ = i0 and ~ =--0.8 (Fig. 4, ~, = 5.271 and %, = i14.24) a large 
vortex occurs in the region D inside of which are located two small vortices. The rotation 
of the liquid in all three vortices occurs in the same direction. 

The author is grateful to V. I. Yudovich for his constant attention to this research. 
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